新闻资讯

为您分享嘉远最新动态

您当前所在的位置:首页 > 新闻资讯
含氟聚合物家族:PTFE、PFA、PVDF、FPI、FKM、FEVE、PFPE、FEP、FPEN......
时间:2023-08-25 查看:2607
含氟聚合物由含氟原子的单体通过均聚或共聚反应而得,由于C-F键极短、键能极高,含氟聚合物相较于一般聚合物产品拥有独特的性能优势。首先,键能极高的氟碳键赋予了聚合物主链骨架的稳定性,含氟聚合物普遍拥有较好的耐候性;其次由于氟原子自身原子半径小,使其拥有一些特别的表面性质,如不粘性,低摩擦性,防水及防腐蚀性等;另外氟原子自身较低的极化率使其拥有优良的电学及光学性质,如高绝缘性、低介电常数以及高透光性。
含氟聚合物主要分为氟树脂、氟橡胶以及其他含氟聚合物等,PTFE、PVDF、FEP是氟树脂材料最主要的产品,占据全球90%以上的氟树脂材料市场,氟橡胶主要包括聚烯烃类氟橡胶、亚硝基氟橡胶、四丙氟橡胶、磷腈氟橡胶以及全氟醚橡胶等,其他含氟聚合物包括含氟聚氨酯、含氟聚酰亚胺、含氟丙烯酸酯聚合物、含氟环氧树脂、聚醚酮、含氟聚酯、含氟聚酰胺等。

本文将简单介绍一下PTFE、PVDF、ETFE、PFA、ECTFE、PCTFE、PFSA、FPI、PDD-TFE共聚物、FEVE、FEP、PVF、THV、含氟聚氨酯、含氟聚碳酸酯、氟橡胶、PTFS、含氟丙烯酸酯聚合物、全氟聚醚、含氟聚酯、含氟聚芳醚、含氟聚芳醚腈等含氟聚合物的性质及用途。

聚四氟乙烯

聚四氟乙烯商品名为“铁氟龙”、“特氟龙”、“特富隆”、“泰氟龙”、"4F" 等,是当之无愧的“塑料王”。
PTFE是由四氟乙烯自由基聚合而制得的一种结晶性聚合物,熔点327 ℃,熔融黏度很大,380℃时达1010Pa·s,不便于成型加工,密度为2.13~2.19克/立方厘米。PTFE具有优异的耐化学品性,其介电常数为2.1,损耗因数低,在很宽的温度和频率范围内是稳定的。

此外,PTFE从低温到高温(-196℃~260℃)的机械性能都很好,抗冲强度高,但拉伸强度、耐磨性、抗蠕变性比其它工程塑料差,因此有时需对其改性,加入玻璃纤维、青铜、碳和石墨来改善其特殊的机械性能。

图片

PTFE垫片
值得注意的是,PTFE的摩擦系数几乎比任何其它材料都低,具有很高的氧指数(OI),极限氧指数(LOI)高达95%,主要应用于防腐、防腐管道及配件、换热器、机械、 电子电器、医用材料、微粉等方面。

含氟聚酰亚胺(FPI)

含氟聚酰亚胺(FPI)是指是主链含有酰亚胺环的化学结构高度规整的刚性聚合物,是由含氟二酐和含氟二胺通过熔融缩聚或溶液缩聚反应生成含氟聚酰胺酸(FPAA),再经酰亚胺化得到的高分子材料。

相比传统PI,FPI在继承了传统PI高强度、耐高温、耐形变、耐弯折等特点的基础上,兼具透明性好、电绝缘性好、介电常数低等特点,而它在OLED显示领域应用广泛,主要用在对透光率要求较高的场景,如盖板薄膜、触控层(TSP)薄膜、高透支撑膜等。
按照化学结构,FPI可分为二苯醚型FPI、均苯型FPI、苯酮型FPI、联苯型FPI;按照性能可以分为含氟聚醚酰亚胺(FPEI)、含氟聚酰胺亚胺(FPAI)等;按照含氟基团可分为全氟PI和部分含氟PI两种。
近些年,FPI在括柔性OLED显示、电子器件散热等高端领域得到应用,市场需求持续攀升,但FPI核心技术仍旧集中在美国和日本等国家,全球约有九成左右的FPI由日本生产。FPI生产技术复杂,需要的原材料种类较多,当前国内对于技术壁垒较低的单体原料,如联苯四甲酸二BPDA、均苯四甲酸二酐PMDA已经实现大规模生产;对于较为特殊的单一,如六氟二酐6FDA也逐步打破外企垄断。

三氟氯乙烯-乙烯基醚共聚物( FEVE )

为克服PVDF的不足,美、日科学家相继开发了多种含羟基官能团的氟碳树脂。1982年,日本旭硝子开发了商品名为lumiflon的氟烯烃和乙烯基醚的共聚树脂FEVE。
FEVE树脂由氟乙烯单体和乙烯基乙醚(或酯)单体交替联接构成,氟乙烯单体把乙烯基醚单体丛两侧包围起来,形成屏敝式的交替共聚物,然后用含羟基、羧基的乙烯基醚单体与氟烯烃共聚,生成的氟树脂含羟基和少量羧基。

由于FEVE具有特殊结构,其具备在酯类、酮类及芳烃溶剂中的可溶性,克服了氟涂料需烧结成膜的缺点,使其可按普通的涂料成膜方式固化,它可以和封闭型多异氰酸酯或三聚氰胺树脂制成单组分中温烘烤涂料,也可以和多异氰酸酯(多采用HDI缩二脲或HDI三聚体)制成双组分涂料,达到常温固化的目的,制得的含氟聚氨酯涂料不仅耐候性优异,而且耐酸碱及耐溶剂性优良,可用于重防腐蚀涂装。

聚全氟乙丙烯( FEP )

FEP是由四氟乙烯和六氟丙烯共聚而成的一种结晶性聚合物。FEP结晶物的熔化点为304℃,密度为2.15克/立方厘米,它是一种软性塑料,其拉伸强度、耐磨性、抗蠕变性低于许多工程塑料。
FEP是化学惰性材料,在很宽的温度和频率范围内具有较低的介电常数(2.1)。该材料不引燃,氧指数高达95%,可阻止火焰的扩散,还具有优良的耐候性,摩擦系数较低,从低温到392℃均可使用。  
图片
聚全氟乙丙烯管

FEP分子式该材料可制成用于挤塑和模塑的粒状产品,用作流化床和静电涂饰的粉末,也可制成水分散液。FEP半成品有膜、板、棒和单纤维,其主要用于制作管道和化学设备的内村、滚筒的面层及各种电线和电缆,如飞机挂钩线、增压电缆、报警电缆、扁形电缆和油井测井电缆。FEP膜已用作太阳能收集器的薄涂层。       

聚三氟氯乙烯( PCTFE )

PCTFE是由三氟氯乙烯自由基引发聚合的重复单元线性主链的聚合物,最早由德国IG Farben公司的Schloffer 和Scherer在1934年first制备得到。1937年,德国I.G.Farbenindustrie公司发表了首篇制备报告,其后美国在执行曼哈顿计划过程中,对PCTFE的性能作了大量的研究工作,1942年美国宣布研制成功,并于1946年投产。

当时PCTFE主要用于分离铀同位素气体扩散材料,1949年产品有市售,1957年美国3M公司以“kel- F”商标大量出售PCTFE树脂。前苏联从1950年~1951年开始生产PCTFE树脂。此后,法国产品“Voltalef”、日本“Dai-flon”、德国“Gostaflon”相继问世。

图片聚三氟氯乙烯管 

我国在1959年开始研制PCTFE树脂,1960年试制成功,1966年建成年产25吨PCTFE树脂的生产装置。
聚三氟氯乙烯简称PCTFE,是由三氟氯乙烯经聚合而成的热塑性氟树脂,低分子量的是液体或蜡状物,高分子量的是白色固体或分散液。

PCTFE聚合物成链状,其晶体结构属于六方晶系。PCTFE分子中碳骨架被氟原子和氯原子紧密包裹,有效阻止了碳骨架外露,因此PCTFE具有良好的耐化学腐蚀性能和化学惰性,仅在高温下被熔融碱金属或氯磺酸破坏。
分子结构中的F原子使聚合物具有化学惰性, Cl原子则使聚合物具有透明性、热塑性与硬度,因此PCTFE是具有高度稳定性、耐热性、不燃性、不吸湿性、不透气性以及惰性的优质热塑性树脂。分子结构中C-Cl键的存在,使得PCTFE除耐热性及化学惰性较聚四氟乙烯 (PTFE)、四氟乙烯-六氟丙烯共聚物 (FEP)稍差外,硬度、刚性、耐蠕变性均较好。
PCTFE具有优异的阻隔气体的能力,其膜产品的水蒸汽透过性在所有透明塑料膜中是minimum的。PCTFE电性能与其它全氟聚合物相似,但介电常数和损耗因数稍高,尤其是在高频时。

PCTFE可制作厚的(3.175mm)光学透明制件,可制成用于模塑和挤塑的粒料,制成的膜厚度为0.0254mm~0.254mm,亦可制成棒和管材。

PCTFE在机械、电子电器、化学工业、医疗器械、军事、核能等领域均有着广泛的应用。在机械领域,PCTFE主要用于高真空系统的密封材料、透明配管及水准仪、尺寸精度高的机械零部件等。

聚偏氟乙烯(PVDF)

PVDF是指偏氟乙烯(VDF)的均聚物或VDF与少量含氟乙烯基单体的共聚物,含氟量60%左右。
PVDF树脂具有优良的耐化学腐蚀、耐高温、耐氧化、耐气候、耐紫外线和耐高温辐射的性能,同时抗拉伸强度和抗冲击强度优良,硬度高且耐磨,热变形温度高,抗蠕变疲劳性能佳,其使用温度范围为-60~150℃,是一种强而韧的结构材料。 
图片
PVDF板材

PVDF应用主要集中在石油化工、电子电气和氟碳涂料三大领域,由于PVDF良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的best材料之一。

PVDF良好的化学稳定性、电绝缘性能,使制作的设备能满足TOCS以及阻燃要求,被广泛应用于半导体工业上高纯化学品的贮存和输送,采用PVDF树脂制作的多孔膜、凝胶、隔膜、粘结剂等,在锂二次电池中应用,目前该用途成为PVDF需求增长最快的市场之一。

可熔性聚四氟乙烯(PFA)

PFA又称"全氟烷氧基氟塑料",与PTFE一样,也是全氟化的氟塑料,它保持了PTFE的一切优异性能。与PTFE不同的是,PFA可以在较低温度下进行熔融加工。

PFA为少量全氟丙基全氟乙烯基醚与聚四氟乙烯的共聚物,熔融粘结性增强,溶体粘度下降,而性能与聚四氟乙烯相比几乎无变化。

PFA长期使用温度为-80℃—260℃,有极好的耐化学腐蚀性,是摩擦系数minimum的塑料之一,还有很好的电性能,其电绝缘性不受温度影响。

PFA其耐化学药品性与聚四氟乙烯相似,比偏氟乙烯好;抗蠕变性和压缩强度均比聚四氟乙烯好,拉伸强度高,伸长率可达100-300%;介电性好,耐辐射性能优异。此外,PFA还具有生理惰性,可植入人体内。

图片

PFA管

PFA适于制作耐腐蚀件,减磨耐磨件、密封件、绝缘件和医疗器械零件,还可用于高温电线、电缆绝缘层,防腐设备、密封材料、泵阀衬套和化学容器。

乙烯-四氟乙烯共聚物(ETFE)

乙烯—四氟乙烯共聚物简称ETFE或F40,ETFE是最强韧的氟塑料,在保持了聚四氟乙烯良好的耐热、耐化学性能和电绝缘性能的同时,它的耐辐射和机械性能有很大程度地改善,拉伸强度可达到50MPa,接近聚四氟乙烯的两倍,更主要的是其加工性能得以大大提高,特别是它和金属表面的附着力表现突出,使氟塑料和钢的紧衬工艺真正得以实现。

ETFE是一种乙烯—四氟乙烯的共聚物,不仅具有优良的抗冲击性、导电性、热稳定性和耐化学腐蚀性,而且机械强度高、加工性能好,广泛用于化工、电子通讯、设备制造、航空航天等领域。

图片

现代建筑中的ETFE膜

另外,ETFE膜为现代建筑提供了一个创新解决方案。由这种膜材料制成的屋面和墙体质量轻,只有同等大小的玻璃质量的1%;韧性好、抗拉强度高、不易被撕裂,延展性大于400%;耐候性和耐化学腐蚀性强,熔融温度高达200℃,并且不会自燃。

更多新闻 关注嘉远更多新闻资讯

【嘉远化工】五一劳动节放假通知

尊敬的各位客户:您们好!        感谢您一直以来对嘉远的信任。劳动假期将至,根据国家节假日放假规定,并结合实际情况,现将节假期事宜做如下安排: 2025年5月1日-5月5日放假,共5天,5月6日(星期二)上班。为确保不影响您的正常生产计划,请您根据以上时间和自身需要,提前做好节日前后备货,不便之处、敬请谅解。祝大家度过一个快乐、平安的节日假期常州市嘉远化工有限公司行政部2025年4月 30 日

查看更多

2025-04-30

六氟系列产品科普:多领域应用的关键化合物

引言六氟化合物因氟原子独特的电负性和化学稳定性,在工业、电子、医药等领域具有不可替代的作用。本文聚焦七种重要的六氟产品——六氟丙烯、六氟丁二烯、六氟环氧丙烷、六氟异丙醇、六氟化硫、六氟化钼、六氟锑酸钠,解析它们的特性、应用及安全性。一、六氟丙烯(C₃F₆)1. 基本性质·无色气体,化学性质活泼,是合成含氟高分子材料的重要单体。·耐高温、耐腐蚀、低表面能。2. 核心应用·氟橡胶与氟塑料:用于汽车密封圈、航空燃油管等耐高温部件。·制冷剂:替代破坏臭氧层的传统氟利昂(如HFCs)。·含氟表面活性剂:用于消防泡沫、防水涂料。3. 注意事项·低毒性,但需避免吸入高浓度气体。二、六氟丁二烯(C₄F₆)1. 基本性质·无色气体,化学结构含共轭双键,反应活性高。·高电子亲和力,适合作为蚀刻气体。2. 核心应用·半导体制造:用于先进制程(如7nm以下)的等离子体蚀刻,精准控制电路图形。·含氟聚合物合成:制备高性能氟树脂。3. 环保优势全球变暖潜能(GWP)低于传统蚀刻气体(如CF₄),助力绿色芯片生产。三、六氟环氧丙烷(C₃F₆O)1. 基本性质·无色液体,含环氧基团和六氟结构,兼具高反应性与稳定性。2. 核心应用·全氟聚醚(PFPE)合成:用于航空航天润滑剂、真空泵油等极端环境。·医药中间体:合成含氟药物(如抗病毒、抗癌药物)。3. 安全提示·对皮肤和眼睛有刺激性,需在通风橱中操作。四、六氟异丙醇(C₃H₂F₆O)·无色液体,强极性溶剂,能与水和有机溶剂混溶。·含氟基团赋予其独特溶解性和低表面张力。2. 核心应用·高分子材料溶剂:溶解尼龙、聚酰亚胺等难溶聚合物,用于纺丝或涂层。·核磁共振(NMR):作为氘代试剂的替代溶剂,提升谱图分辨率。·医药合成:参与含氟手性化合物的制备。3. 注意事项·具有刺激性气味,长期接触需防护。五、六氟化硫(SF₆)1. 基本性质·无色无味气体,绝缘性能极佳,化学惰性。2. 核心应用·电力设备:高压开关、气体绝缘开关(GIS)的绝缘与灭弧介质。·半导体:晶圆蚀刻与清洗。·医疗:眼科手术中的视网膜填充气体。3. 环保挑战·强效温室气体(GWP=23,500),需严格回收与替代技术(如C₅氟酮)。六、六氟化钼(MoF₆)1. 基本性质·无色晶体或气体,强氧化性,易水解。2. 核心应用·钼沉积:化学气相沉积(CVD)制备钼薄膜,用于电子元件。·核燃料加工:铀提纯过程中的氟化剂。3. 安全风险·遇水释放有毒HF气体,需严格防潮。七、六氟锑酸钠(NaSbF₆)1. 基本性质·白色晶体,强路易斯酸性,稳定性高。2. 核心应用·催化领域:作为超强酸(如“魔酸”HSbF₆)的组成部分,用于烷烃异构化反应。·电化学:锂电池电解液添加剂,提升电极稳定性。3. 注意事项·具腐蚀性,操作需穿戴耐酸防护装备。安全与环保总结毒性管理:多数六氟化合物具刺激性或毒性,需密闭操作与个人防护。温室气体替代:推动SF₆回收、开发低GWP蚀刻气体(如C₄F₆)。废弃物处理:含氟废液需中和后处理,避免污染水源。结语从新能源电池到芯片制造,从航空航天到医药合成,六氟化合物凭借其“氟特性”成为现代工业的“隐形支柱”。未来,随着绿色化学与低碳技术的发展,高效、低毒的六氟材料将引领更多创新突破。

查看更多

2025-04-28

科普新闻:硼-10酸的丰度与纯度——核能领域的“双生密码”

在核反应堆安全防护、癌症治疗等领域,一种名为“硼-10酸”的化合物正悄然扮演关键角色。然而,围绕它的“丰度”与“纯度”两个指标,却常令公众困惑。这两者究竟有何区别?为何科学家要像“雕琢钻石”般严苛对待它们?本文将揭开这一科学谜题。一、同位素丰度:硼-10的“稀有度”竞赛硼在自然界中并非“独生子”,而是以两种同位素形式共存:硼-10(¹⁰B)和硼-11(¹¹B),天然丰度分别为约19.1%和80.9%。两者化学性质几乎相同,但核特性天差地别——硼-10对中子具有极强的“吞噬”能力,是核反应堆控制棒、防辐射材料的核心成分。丰度(Isotopic Abundance)特指硼-10在总硼元素中的占比。例如,天然硼酸的硼-10丰度为19.1%,而核工业级硼-10酸需通过气体离心法或化学交换法浓缩至96%以上。丰度每提升1%,其中子吸收效率可能呈指数级增长,堪称“核能安全的第一道闸门”。二、化学纯度:杂质的“致命陷阱”如果说丰度是“质量”的比拼,化学纯度(Chemical Purity)则是“洁净度”的较量。它衡量的是硼酸(H₃BO₃)中非硼物质(如金属离子、有机物、其他酸类)的含量。例如,试剂级硼酸纯度可达99.999%,而工业级可能仅为99%。在硼中子俘获治疗(BNCT)中,纯度不足的硼酸若含重金属杂质,可能毒害患者细胞;在半导体制造中,钠离子超标会直接导致芯片性能劣化。因此,高纯度需依赖重结晶、离子交换等精细工艺实现。三、丰度与纯度:为何缺一不可?1核电站控制棒* 高丰度:确保快速吸收中子,防止链式反应失控。* 高纯度:避免杂质(如氯离子)腐蚀金属包壳,酿成泄漏事故。2癌症靶向治疗(BNCT)* 高丰度:提升硼-10捕获中子的概率,精准杀死癌细胞。* 高纯度:杜绝有毒杂质,保护健康组织。3半导体掺杂工艺* 特定丰度:调节硼-10/11比例可改变硅晶电导特性。* 超高纯度:单颗尘埃就能毁掉整片晶圆。四、突破瓶颈:中国技术的“双重突围”长期以来,高丰度硼-10酸被欧美垄断,价格高达每克数百美元。近年来,我国通过激光同位素分离技术,将丰度提升至99%以上,同时采用超临界流体提纯,将杂质控制在ppb(十亿分之一)级。2023年,中核集团宣布实现公斤级高丰度高纯硼-10酸自主量产,成本降低90%,为第四代核电站及BNCT设备国产化铺平道路。结语:微观世界的“精准战争”从同位素丰度到化学纯度,硼-10酸的“双标挑战”折射出人类对物质操控的极致追求。在原子与分子的尺度上,每0.1%的提升都可能改写一个产业的命运。未来,随着量子计算、核聚变等领域的崛起,这场“精准战争”只会愈演愈烈。而在这场战争中,科学家的每一克努力,都在为人类文明点亮新的可能。

查看更多

2025-04-25

国际产教联盟高端商务研学日本站圆 满落幕,探索中日产业协同新机遇

  2025年4月12日至16日,由国际产教联盟主办的【高端商务研学】-日本站活动在日本东京、京都、大阪三地成功举办。此次5天4夜的行程汇聚了中日投资促进中心权威专家、企业高管及行业领 袖,通过政企对话、前沿技术参访、闭门研讨及世博会前瞻考察,深度挖掘中日产业协同潜力,为参与者带来了一场高规格的商务与思想盛宴。行程亮点:政企链接与行业洞察首站东京,研学团在国会官员的接待下,参与了“政企深度链接”高层对话,探讨中日经贸合作新方向。随后的国际总裁班上,日本顶 尖商学院专家围绕“科技创新赋能企业高质量发展”展开分享,结合日本老龄化社会的成熟经验,为中国银发经济与康养产业提供了可借鉴的范本。下午的商务研学分设两大主题:康养与银发经济:参访湘南机器人康复中心株式会社,体验全球领 先的“HAL”康复设备,探索智能技术如何赋能养老护理; 中企并购路径:走进日本Top1律所VERY BEST,获取日本并购高频行业趋势、中企收购案例及2025年最新标的私密尽调资料。 京都:经营哲学与循环经济实践在京都,研学团深入京瓷集团,系统学习稻盛和夫创立的“京瓷哲学”与“阿米巴经营”理念,领悟伦 理导向与经营效率结合的创新管理模式。下午转战松 下电器白色家电回收工场,副社长亲自揭秘其99%高纯度塑料分选技术,展现ESG理念下循环经济的规模化实践。大阪:银发经济与世博前瞻行程收官于大阪,参访大阪福祉销售中心,全 面了解日本养老产业的设备、系统及服务解决方案。作为压 轴亮点,研学团获2025大阪世博会组委会官方接待,提前洞察这一全球盛会的筹备进展与商机。世博会预计吸引150个国家及地区参与,接待访客超2800万人次,为中日企业合作开辟全新窗口。高端资源赋能,开拓无限商机本次活动全程由中日投资促进中心专家带队,涵盖星 级酒店住宿、新干线交通及高规格商务宴请,确保参与者高 效对接顶 级资源。通过政企对话、闭门会议及一线企业参访,不仅深化了对日本产业链与创新模式的理解,更为中日企业在康养、科技、并购等领域的合作搭建了桥梁。国际产教联盟表示,未来将持续打造高端商务研学平台,推动全球产教资源互通,助力企业抢占前沿赛道,共赢未来。此次日本商务研学以思维碰撞激荡创新动能,以深度对话串联产业前沿,不仅为参与者开启了全球化战略视野的新篇章,更以东方匠心精神与数字时代的共振之力,持续赋能亚太地区商业生态的迭代升级。未来,这场智慧交融的跨界对话将持续构建中日协作网络,为全球经济复苏注入更多东方哲思与创新势能。

查看更多

2025-04-22